Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetes ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608276

RESUMO

The RabGTPase-activating protein (RabGAP) TBC1D4 (=AS160) represents a key component in the regulation of glucose transport into skeletal muscle and white adipose tissue (WAT) and is therefore crucial during the development of insulin resistance and type-2 diabetes. Increased daily activity has been shown to be associated with improved postprandial hyperglycemia in allele carriers of a loss-of-function variant in the human TBC1D4 gene. Using conventional Tbc1d4-deficient mice (D4KO) fed a high-fat diet (HFD), we show that already a moderate endurance exercise training leads to substantially improved glucose and insulin tolerance and enhanced expression levels of markers for mitochondrial activity and browning in WAT from D4KO animals. Importantly, in vivo and ex vivo analyses of glucose uptake revealed increased glucose clearance in interscapular brown adipose tissue (iBAT) and WAT from trained D4KO mice. Thus, chronic exercise is able to overcome the genetically induced insulin resistance caused by the Tbc1d4-depletion. Gene variants in TBC1D4 may be relevant in future precision medicine as determinants of exercise response.

2.
Nat Commun ; 15(1): 1393, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360927

RESUMO

Patients affected by neurofibromatosis type 1 (NF1) frequently show muscle weakness with unknown etiology. Here we show that, in mice, Neurofibromin 1 (Nf1) is not required in muscle fibers, but specifically in early postnatal myogenic progenitors (MPs), where Nf1 loss led to cell cycle exit and differentiation blockade, depleting the MP pool resulting in reduced myonuclear accretion as well as reduced muscle stem cell numbers. This was caused by precocious induction of stem cell quiescence coupled to metabolic reprogramming of MPs impinging on glycolytic shutdown, which was conserved in muscle fibers. We show that a Mek/Erk/NOS pathway hypersensitizes Nf1-deficient MPs to Notch signaling, consequently, early postnatal Notch pathway inhibition ameliorated premature quiescence, metabolic reprogramming and muscle growth. This reveals an unexpected role of Ras/Mek/Erk signaling supporting postnatal MP quiescence in concert with Notch signaling, which is controlled by Nf1 safeguarding coordinated muscle growth and muscle stem cell pool establishment. Furthermore, our data suggest transmission of metabolic reprogramming across cellular differentiation, affecting fiber metabolism and function in NF1.


Assuntos
Neurofibromatose 1 , Neurofibromina 1 , Camundongos , Humanos , Animais , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Neurofibromatose 1/genética , Neurofibromatose 1/metabolismo , Transdução de Sinais/fisiologia , Sistema de Sinalização das MAP Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo
3.
J Autoimmun ; 140: 103097, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37633117

RESUMO

Systemic sclerosis (SSc) is a complex disease that affects the connective tissue, causing fibrosis. SSc patients show altered immune cell composition and activation in the peripheral blood (PB). PB monocytes (Mos) are recruited into tissues where they differentiate into macrophages, which are directly involved in fibrosis. To understand the role of CD14+ PB Mos in SSc, a single-cell transcriptome analysis (scRNA-seq) was conducted on 8 SSc patients and 8 controls. Using unsupervised clustering methods, CD14+ cells were assigned to 11 clusters, which added granularity to the known monocyte subsets: classical (cMos), intermediate (iMos) and non-classical Mos (ncMos) or type 2 dendritic cells. NcMos were significantly overrepresented in SSc patients and showed an active IFN-signature and increased expression levels of PTGES, in addition to monocyte motility and adhesion markers. We identified a SSc-related cluster of IRF7+ STAT1+ iMos with an aberrant IFN-response. Finally, a depletion of M2 polarised cMos in SSc was observed. Our results highlighted the potential of PB Mos as biomarkers for SSc and provided new possibilities for putative drug targets for modulating the innate immune response in SSc.

4.
Bioinformatics ; 39(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37267159

RESUMO

MOTIVATION: Long-read transcriptome sequencing (LRTS) has the potential to enhance our understanding of alternative splicing and the complexity of this process requires the use of versatile computational tools, with the ability to accommodate various stages of the workflow with maximum flexibility. RESULTS: We introduce IsoTools, a Python-based LRTS analysis framework that offers a wide range of functionality for transcriptome reconstruction and quantification of transcripts. Furthermore, we integrate a graph-based method for identifying alternative splicing events and a statistical approach based on the beta-binomial distribution for detecting differential events. To demonstrate the effectiveness of our methods, we applied IsoTools to PacBio LRTS data of human hepatocytes treated with the histone deacetylase inhibitor valproic acid. Our results indicate that LRTS can provide valuable insights into alternative splicing, particularly in terms of complex and differential splicing patterns, in comparison to short-read RNA-seq. AVAILABILITY AND IMPLEMENTATION: IsoTools is available on GitHub and PyPI, and its documentation, including tutorials, CLI, and API references, can be found at https://isotools.readthedocs.io/.


Assuntos
Processamento Alternativo , Transcriptoma , Humanos , Fluxo de Trabalho , Perfilação da Expressão Gênica , Splicing de RNA , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de RNA/métodos
5.
NPJ Regen Med ; 8(1): 19, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019910

RESUMO

Skeletal muscle regeneration requires the coordinated interplay of diverse tissue-resident- and infiltrating cells. Fibro-adipogenic progenitors (FAPs) are an interstitial cell population that provides a beneficial microenvironment for muscle stem cells (MuSCs) during muscle regeneration. Here we show that the transcription factor Osr1 is essential for FAPs to communicate with MuSCs and infiltrating macrophages, thus coordinating muscle regeneration. Conditional inactivation of Osr1 impaired muscle regeneration with reduced myofiber growth and formation of excessive fibrotic tissue with reduced stiffness. Osr1-deficient FAPs acquired a fibrogenic identity with altered matrix secretion and cytokine expression resulting in impaired MuSC viability, expansion and differentiation. Immune cell profiling suggested a novel role for Osr1-FAPs in macrophage polarization. In vitro analysis suggested that increased TGFß signaling and altered matrix deposition by Osr1-deficient FAPs actively suppressed regenerative myogenesis. In conclusion, we show that Osr1 is central to FAP function orchestrating key regenerative events such as inflammation, matrix secretion and myogenesis.

6.
Curr Biol ; 32(10): 2248-2262.e9, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35504281

RESUMO

Sleep is an essential state that allows for recuperation and survival processes. Disturbing sleep triggers stress responses that promote protective gene expression. Sleep and its deprivation grossly impact gene expression, but little is known about how normal or disturbed sleep control gene expression. Central to the induction of sleep are sleep-active neurons, which inhibit wakefulness and promote survival. Sleep and sleep-active neurons are highly conserved. In Caenorhabditis elegans, the sleep-active RIS neuron is crucial for sleep and survival. Here, we show that RIS depolarization promotes the protective gene expression response that occurs during developmental arrest. This response includes the activation of FOXO/DAF-16 and expression of DAF-16 target genes such as HSP-12.6, a small heat-shock protein that is required for starvation survival. Disturbing sleep by mechanical stimulation increases RIS depolarization. RIS activation in turn activates DAF-16 and other genes required for survival. Hence, during normal sleep, RIS depolarization promotes protective gene expression. When sleep is disturbed, protective gene expression gets further increased by raised RIS depolarization. We thus link sleep-active neuron depolarization to protective gene expression changes and suggest that the cellular stress response following sleep deprivation could be understood as a safeguarding process that is caused by the overactivation of sleep-active neurons.


Assuntos
Proteínas de Caenorhabditis elegans , Animais , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Expressão Gênica , Neurônios/fisiologia , Sono/genética
7.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35058355

RESUMO

Songbirds have one special accessory chromosome, the so-called germline-restricted chromosome (GRC), which is only present in germline cells and absent from all somatic tissues. Earlier work on the zebra finch (Taeniopygia guttata castanotis) showed that the GRC is inherited only through the female line-like the mitochondria-and is eliminated from the sperm during spermatogenesis. Here, we show that the GRC has the potential to be paternally inherited. Confocal microscopy using GRC-specific fluorescent in situ hybridization probes indicated that a considerable fraction of sperm heads (1 to 19%) in zebra finch ejaculates still contained the GRC. In line with these cytogenetic data, sequencing of ejaculates revealed that individual males from two families differed strongly and consistently in the number of GRCs in their ejaculates. Examining a captive-bred male hybrid of the two zebra finch subspecies (T. g. guttata and T. g. castanotis) revealed that the mitochondria originated from a castanotis mother, whereas the GRC came from a guttata father. Moreover, analyzing GRC haplotypes across nine castanotis matrilines, estimated to have diverged for up to 250,000 y, showed surprisingly little variability among GRCs. This suggests that a single GRC haplotype has spread relatively recently across all examined matrilines. A few diagnostic GRC mutations that arose since this inferred spreading suggest that the GRC has continued to jump across matriline boundaries. Our findings raise the possibility that certain GRC haplotypes could selfishly spread through the population via occasional paternal transmission, thereby outcompeting other GRC haplotypes that were limited to strict maternal inheritance, even if this was partly detrimental to organismal fitness.


Assuntos
Cromossomos , Células Germinativas , Herança Paterna , Aves Canoras/genética , Animais , Análise Citogenética , DNA Mitocondrial , Evolução Molecular , Feminino , Haplótipos , Masculino , Filogenia , Aves Canoras/classificação , Espermatozoides
8.
Sci Rep ; 11(1): 10815, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031452

RESUMO

Monitoring and early detection of emerging infectious diseases in wild animals is of crucial global importance, yet reliable ways to measure immune status and responses are lacking for animals in the wild. Here we assess the usefulness of bio-loggers for detecting disease outbreaks in free-living birds and confirm detailed responses using leukocyte composition and large-scale transcriptomics. We simulated natural infections by viral and bacterial pathogens in captive mallards (Anas platyrhynchos), an important natural vector for avian influenza virus. We show that body temperature, heart rate and leukocyte composition change reliably during an acute phase immune response. Using genome-wide gene expression profiling of whole blood across time points we confirm that immunostimulants activate pathogen-specific gene regulatory networks. By reporting immune response related changes in physiological and behavioural traits that can be studied in free-ranging populations, we provide baseline information with importance to the global monitoring of zoonotic diseases.


Assuntos
Anseriformes/imunologia , Perfilação da Expressão Gênica/veterinária , Redes Reguladoras de Genes , Vírus da Influenza A/imunologia , Influenza Aviária/diagnóstico , Animais , Anseriformes/sangue , Anseriformes/genética , Proteínas Aviárias/genética , Análise Química do Sangue , Temperatura Corporal , Simulação por Computador , Regulação da Expressão Gênica , Frequência Cardíaca , Sequenciamento de Nucleotídeos em Larga Escala , Influenza Aviária/genética , Influenza Aviária/imunologia , Vigilância da População , Análise de Sequência de RNA , Sequenciamento do Exoma
9.
J Cachexia Sarcopenia Muscle ; 11(6): 1758-1778, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33078583

RESUMO

BACKGROUND: Neurofibromatosis type 1 (NF1) is a multi-organ disease caused by mutations in neurofibromin 1 (NF1). Amongst other features, NF1 patients frequently show reduced muscle mass and strength, impairing patients' mobility and increasing the risk of fall. The role of Nf1 in muscle and the cause for the NF1-associated myopathy are mostly unknown. METHODS: To dissect the function of Nf1 in muscle, we created muscle-specific knockout mouse models for NF1, inactivating Nf1 in the prenatal myogenic lineage either under the Lbx1 promoter or under the Myf5 promoter. Mice were analysed during prenatal and postnatal myogenesis and muscle growth. RESULTS: Nf1Lbx1 and Nf1Myf5 animals showed only mild defects in prenatal myogenesis. Nf1Lbx1 animals were perinatally lethal, while Nf1Myf5 animals survived only up to approximately 25 weeks. A comprehensive phenotypic characterization of Nf1Myf5 animals showed decreased postnatal growth, reduced muscle size, and fast fibre atrophy. Proteome and transcriptome analyses of muscle tissue indicated decreased protein synthesis and increased proteasomal degradation, and decreased glycolytic and increased oxidative activity in muscle tissue. High-resolution respirometry confirmed enhanced oxidative metabolism in Nf1Myf5 muscles, which was concomitant to a fibre type shift from type 2B to type 2A and type 1. Moreover, Nf1Myf5 muscles showed hallmarks of decreased activation of mTORC1 and increased expression of atrogenes. Remarkably, loss of Nf1 promoted a robust activation of AMPK with a gene expression profile indicative of increased fatty acid catabolism. Additionally, we observed a strong induction of genes encoding catabolic cytokines in muscle Nf1Myf5 animals, in line with a drastic reduction of white, but not brown adipose tissue. CONCLUSIONS: Our results demonstrate a cell autonomous role for Nf1 in myogenic cells during postnatal muscle growth required for metabolic and proteostatic homeostasis. Furthermore, Nf1 deficiency in muscle drives cross-tissue communication and mobilization of lipid reserves.


Assuntos
Neurofibromatose 1 , Neurofibromina 1/metabolismo , Animais , Homeostase , Humanos , Camundongos , Desenvolvimento Muscular , Músculos , Neurofibromatose 1/genética , Neurofibromina 1/genética
10.
Viruses ; 12(1)2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31936115

RESUMO

Virus replication displays a large cell-to-cell heterogeneity; yet, not all sources of this variability are known. Here, we study the effect of defective interfering (DI) particle (DIP) co-infection on cell-to-cell variability in influenza A virus (IAV) replication. DIPs contain a large internal deletion in one of their eight viral RNAs (vRNA) and are, thus, defective in virus replication. Moreover, they interfere with virus replication. Using single-cell isolation and reverse transcription polymerase chain reaction, we uncovered a large between-cell heterogeneity in the DI vRNA content of infected cells, which was confirmed for DI mRNAs by single-cell RNA sequencing. A high load of intracellular DI vRNAs and DI mRNAs was found in low-productive cells, indicating their contribution to the large cell-to-cell variability in virus release. Furthermore, we show that the magnitude of host cell mRNA expression (some factors may inhibit virus replication), but not the ribosome content, may further affect the strength of single-cell virus replication. Finally, we show that the load of viral mRNAs (facilitating viral protein production) and the DI mRNA content are, independently from one another, connected with single-cell virus production. Together, these insights advance single-cell virology research toward the elucidation of the complex multi-parametric origin of the large cell-to-cell heterogeneity in virus infections.


Assuntos
Vírus Defeituosos/genética , Variação Genética , Vírus da Influenza A/genética , RNA Viral/genética , Análise de Célula Única , Replicação Viral , Animais , Cães , Sequenciamento de Nucleotídeos em Larga Escala , Vírus da Influenza A/fisiologia , Células Madin Darby de Rim Canino
11.
Hum Mutat ; 40(11): 1968-1984, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31343797

RESUMO

Considering the application of human genome variation databases in precision medicine, population-specific genome projects are continuously being developed. However, the Middle Eastern population is underrepresented in current databases. Accordingly, we established Iranome database (www.iranome.com) by performing whole exome sequencing on 800 individuals from eight major Iranian ethnic groups representing the second largest population of Middle East. We identified 1,575,702 variants of which 308,311 were novel (19.6%). Also, by presenting higher frequency for 37,384 novel or known rare variants, Iranome database can improve the power of molecular diagnosis. Moreover, attainable clinical information makes this database a good resource for classifying pathogenicity of rare variants. Principal components analysis indicated that, apart from Iranian-Baluchs, Iranian-Turkmen, and Iranian-Persian Gulf Islanders, who form their own clusters, rest of the population were genetically linked, forming a super-population. Furthermore, only 0.6% of novel variants showed counterparts in "Greater Middle East Variome Project", emphasizing the value of Iranome at national level by releasing a comprehensive catalog of Iranian genomic variations and also filling another gap in the catalog of human genome variations at international level. We introduce Iranome as a resource which may also be applicable in other countries located in neighboring regions historically called Greater Iran (Persia).


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Etnicidade/genética , Genoma Humano , Genômica , Navegador , Variação Genética , Genética Populacional , Genômica/métodos , Genótipo , Geografia , Humanos , Irã (Geográfico) , Oriente Médio , Anotação de Sequência Molecular
12.
Curr Biol ; 29(10): 1712-1720.e7, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31080084

RESUMO

Some species responded successfully to prehistoric changes in climate [1, 2], while others failed to adapt and became extinct [3]. The factors that determine successful climate adaptation remain poorly understood. We constructed a reference genome and studied physiological adaptations in the Alpine marmot (Marmota marmota), a large ground-dwelling squirrel exquisitely adapted to the "ice-age" climate of the Pleistocene steppe [4, 5]. Since the disappearance of this habitat, the rodent persists in large numbers in the high-altitude Alpine meadow [6, 7]. Genome and metabolome showed evidence of adaptation consistent with cold climate, affecting white adipose tissue. Conversely, however, we found that the Alpine marmot has levels of genetic variation that are among the lowest for mammals, such that deleterious mutations are less effectively purged. Our data rule out typical explanations for low diversity, such as high levels of consanguineous mating, or a very recent bottleneck. Instead, ancient demographic reconstruction revealed that genetic diversity was lost during the climate shifts of the Pleistocene and has not recovered, despite the current high population size. We attribute this slow recovery to the marmot's adaptive life history. The case of the Alpine marmot reveals a complicated relationship between climatic changes, genetic diversity, and conservation status. It shows that species of extremely low genetic diversity can be very successful and persist over thousands of years, but also that climate-adapted life history can trap a species in a persistent state of low genetic diversity.


Assuntos
Adaptação Biológica , Clima , Variação Genética , Genoma , Marmota/genética , Animais , Filogenia , Densidade Demográfica
13.
Development ; 145(7)2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29511024

RESUMO

Connective tissues support organs and play crucial roles in development, homeostasis and fibrosis, yet our understanding of their formation is still limited. To gain insight into the molecular mechanisms of connective tissue specification, we selected five zinc-finger transcription factors - OSR1, OSR2, EGR1, KLF2 and KLF4 - based on their expression patterns and/or known involvement in connective tissue subtype differentiation. RNA-seq and ChIP-seq profiling of chick limb micromass cultures revealed a set of common genes regulated by all five transcription factors, which we describe as a connective tissue core expression set. This common core was enriched with genes associated with axon guidance and myofibroblast signature, including fibrosis-related genes. In addition, each transcription factor regulated a specific set of signalling molecules and extracellular matrix components. This suggests a concept whereby local molecular niches can be created by the expression of specific transcription factors impinging on the specification of local microenvironments. The regulatory network established here identifies common and distinct molecular signatures of limb connective tissue subtypes, provides novel insight into the signalling pathways governing connective tissue specification, and serves as a resource for connective tissue development.


Assuntos
Diferenciação Celular/genética , Galinhas/metabolismo , Tecido Conjuntivo/metabolismo , Fatores de Transcrição/metabolismo , Animais , Galinhas/genética , Clonagem Molecular , Extremidades , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica , Hibridização In Situ , Morfogênese/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Transdução de Sinais , Dedos de Zinco/genética
14.
Biol Open ; 7(1)2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29183907

RESUMO

The sequence of the chicken genome, like several other draft genome sequences, is presently not fully covered. Gaps, contigs assigned with low confidence and uncharacterized chromosomes result in gene fragmentation and imprecise gene annotation. Transcript abundance estimation from RNA sequencing (RNA-seq) data relies on read quality, library complexity and expression normalization. In addition, the quality of the genome sequence used to map sequencing reads, and the gene annotation that defines gene features, must also be taken into account. A partially covered genome sequence causes the loss of sequencing reads from the mapping step, while an inaccurate definition of gene features induces imprecise read counts from the assignment step. Both steps can significantly bias interpretation of RNA-seq data. Here, we describe a dual transcript-discovery approach combining a genome-guided gene prediction and a de novo transcriptome assembly. This dual approach enabled us to increase the assignment rate of RNA-seq data by nearly 20% as compared to when using only the chicken reference annotation, contributing therefore to a more accurate estimation of transcript abundance. More generally, this strategy could be applied to any organism with partial genome sequence and/or lacking a manually-curated reference annotation in order to improve the accuracy of gene expression studies.

15.
Nat Commun ; 8(1): 1218, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29084951

RESUMO

Fibro-adipogenic progenitors (FAPs) are an interstitial cell population in adult skeletal muscle that support muscle regeneration. During development, interstitial muscle connective tissue (MCT) cells support proper muscle patterning, however the underlying molecular mechanisms are not well understood and it remains unclear whether adult FAPs and embryonic MCT cells share a common lineage. We show here that mouse embryonic limb MCT cells expressing the transcription factor Osr1, differentiate into fibrogenic and adipogenic cells in vivo and in vitro defining an embryonic FAP-like population. Genetic lineage tracing shows that developmental Osr1+ cells give rise to a subset of adult FAPs. Loss of Osr1 function leads to a reduction of myogenic progenitor proliferation and survival resulting in limb muscle patterning defects. Transcriptome and functional analyses reveal that Osr1+ cells provide a critical pro-myogenic niche via the production of MCT specific extracellular matrix components and secreted signaling factors.


Assuntos
Embrião de Mamíferos/citologia , Extremidades/embriologia , Desenvolvimento Muscular , Mioblastos/citologia , Fatores de Transcrição/metabolismo , Envelhecimento/metabolismo , Animais , Padronização Corporal , Tecido Conjuntivo/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Camundongos , Mioblastos/metabolismo , Transdução de Sinais , Fator de Transcrição 4/metabolismo
16.
Nucleic Acids Res ; 45(6): e44, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-27913729

RESUMO

Genome-wide enrichment of methylated DNA followed by sequencing (MeDIP-seq) offers a reasonable compromise between experimental costs and genomic coverage. However, the computational analysis of these experiments is complex, and quantification of the enrichment signals in terms of absolute levels of methylation requires specific transformation. In this work, we present QSEA, Quantitative Sequence Enrichment Analysis, a comprehensive workflow for the modelling and subsequent quantification of MeDIP-seq data. As the central part of the workflow we have developed a Bayesian statistical model that transforms the enrichment read counts to absolute levels of methylation and, thus, enhances interpretability and facilitates comparison with other methylation assays. We suggest several calibration strategies for the critical parameters of the model, either using additional data or fairly general assumptions. By comparing the results with bisulfite sequencing (BS) validation data, we show the improvement of QSEA over existing methods. Additionally, we generated a clinically relevant benchmark data set consisting of methylation enrichment experiments (MeDIP-seq), BS-based validation experiments (Methyl-seq) as well as gene expression experiments (RNA-seq) derived from non-small cell lung cancer patients, and show that the workflow retrieves well-known lung tumour methylation markers that are causative for gene expression changes, demonstrating the applicability of QSEA for clinical studies. QSEA is implemented in R and available from the Bioconductor repository 3.4 (www.bioconductor.org/packages/qsea).


Assuntos
Metilação de DNA , Genômica/métodos , Análise de Sequência de DNA/métodos , Animais , Teorema de Bayes , Regulação da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Camundongos , Regiões Promotoras Genéticas , Sulfitos , Fluxo de Trabalho
17.
Nat Microbiol ; 1: 15030, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27572163

RESUMO

The regulation of gene expression in response to nutrient availability is fundamental to the genotype-phenotype relationship. The metabolic-genetic make-up of the cell, as reflected in auxotrophy, is hence likely to be a determinant of gene expression. Here, we address the importance of the metabolic-genetic background by monitoring transcriptome, proteome and metabolome in a repertoire of 16 Saccharomyces cerevisiae laboratory backgrounds, combinatorially perturbed in histidine, leucine, methionine and uracil biosynthesis. The metabolic background affected up to 85% of the coding genome. Suggesting widespread confounding, these transcriptional changes show, on average, 83% overlap between unrelated auxotrophs and 35% with previously published transcriptomes generated for non-metabolic gene knockouts. Background-dependent gene expression correlated with metabolic flux and acted, predominantly through masking or suppression, on 88% of transcriptional interactions epistatically. As a consequence, the deletion of the same metabolic gene in a different background could provoke an entirely different transcriptional response. Propagating to the proteome and scaling up at the metabolome, metabolic background dependencies reveal the prevalence of metabolism-dependent epistasis at all regulatory levels. Urging a fundamental change of the prevailing laboratory practice of using auxotrophs and nutrient supplemented media, these results reveal epistatic intertwining of metabolism with gene expression on the genomic scale.


Assuntos
Epistasia Genética , Regulação Fúngica da Expressão Gênica , Metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Redes Reguladoras de Genes
18.
Mol Endocrinol ; 29(7): 1037-54, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26052614

RESUMO

The normal prostate as well as early stages and advanced prostate cancer (PCa) require a functional androgen receptor (AR) for growth and survival. The recent discovery of microRNAs (miRNAs) as novel effector molecules of AR disclosed the existence of an intricate network between AR, miRNAs and downstream target genes. In this study DUCaP cells, characterized by high content of wild-type AR and robust AR transcriptional activity, were chosen as the main experimental model. By integrative analysis of chromatin immunoprecipitation-sequencing (ChIP-seq) and microarray expression profiling data, miRNAs putatively bound and significantly regulated by AR were identified. A direct AR regulation of miR-22, miR-29a, and miR-17-92 cluster along with their host genes was confirmed. Interestingly, endogenous levels of miR-22 and miR-29a were found to be reduced in PCa cells expressing AR. In primary tumor samples, miR-22 and miR-29a were less abundant in the cancerous tissue compared with the benign counterpart. This specific expression pattern was associated with a differential DNA methylation of the genomic AR binding sites. The identification of laminin gamma 1 (LAMC1) and myeloid cell leukemia 1 (MCL1) as direct targets of miR-22 and miR-29a, respectively, suggested a tumor-suppressive role of these miRNAs. Indeed, transfection of miRNA mimics in PCa cells induced apoptosis and diminished cell migration and viability. Collectively, these data provide additional information regarding the complex regulatory machinery that guides miRNAs activity in PCa, highlighting an important contribution of miRNAs in the AR signaling.


Assuntos
Genoma , Laminina/genética , MicroRNAs/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Receptores Androgênicos/genética , Androgênios/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Sítios de Ligação , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Laminina/metabolismo , Masculino , MicroRNAs/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Receptores Androgênicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
19.
PLoS One ; 8(7): e67461, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874421

RESUMO

MiRNAs are discussed as diagnostic and therapeutic molecules. However, effective miRNA drug treatments with miRNAs are, so far, hampered by the complexity of the miRNA networks. To identify potential miRNA drugs in colorectal cancer, we profiled miRNA and mRNA expression in matching normal, tumor and metastasis tissues of eight patients by Illumina sequencing. We validated six miRNAs in a large tissue screen containing 16 additional tumor entities and identified miRNA-1, miRNA-129, miRNA-497 and miRNA-215 as constantly de-regulated within the majority of cancers. Of these, we investigated miRNA-1 as representative in a systems-biology simulation of cellular cancer models implemented in PyBioS and assessed the effects of depletion as well as overexpression in terms of miRNA-1 as a potential treatment option. In this system, miRNA-1 treatment reverted the disease phenotype with different effectiveness among the patients. Scoring the gene expression changes obtained through mRNA-Seq from the same patients we show that the combination of deep sequencing and systems biological modeling can help to identify patient-specific responses to miRNA treatments. We present this data as guideline for future pre-clinical assessments of new and personalized therapeutic options.


Assuntos
Neoplasias Colorretais/genética , Redes Reguladoras de Genes/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , MicroRNAs/genética , RNA Mensageiro/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular , Neoplasias Colorretais/metabolismo , Biologia Computacional/métodos , Regulação para Baixo , Feminino , Genes Supressores de Tumor , Humanos , Masculino , Pessoa de Meia-Idade
20.
PLoS One ; 8(3): e59976, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23555854

RESUMO

BACKGROUND: Overexpression of ERG transcription factor due to genomic ERG-rearrangements defines a separate molecular subtype of prostate tumors. One of the consequences of ERG accumulation is modulation of the cell's gene expression profile. Tudor domain-containing protein 1 gene (TDRD1) was reported to be differentially expressed between TMPRSS2:ERG-negative and TMPRSS2:ERG-positive prostate cancer. The aim of our study was to provide a mechanistic explanation for the transcriptional activation of TDRD1 in ERG rearrangement-positive prostate tumors. METHODOLOGY/PRINCIPAL FINDINGS: Gene expression measurements by real-time quantitative PCR revealed a remarkable co-expression of TDRD1 and ERG (r(2) = 0.77) but not ETV1 (r(2)<0.01) in human prostate cancer in vivo. DNA methylation analysis by MeDIP-Seq and bisulfite sequencing showed that TDRD1 expression is inversely correlated with DNA methylation at the TDRD1 promoter in vitro and in vivo (ρ = -0.57). Accordingly, demethylation of the TDRD1 promoter in TMPRSS2:ERG-negative prostate cancer cells by DNA methyltransferase inhibitors resulted in TDRD1 induction. By manipulation of ERG dosage through gene silencing and forced expression we show that ERG governs loss of DNA methylation at the TDRD1 promoter-associated CpG island, leading to TDRD1 overexpression. CONCLUSIONS/SIGNIFICANCE: We demonstrate that ERG is capable of disrupting a tissue-specific DNA methylation pattern at the TDRD1 promoter. As a result, TDRD1 becomes transcriptionally activated in TMPRSS2:ERG-positive prostate cancer. Given the prevalence of ERG fusions, TDRD1 overexpression is a common alteration in human prostate cancer which may be exploited for diagnostic or therapeutic procedures.


Assuntos
Proteínas de Transporte/metabolismo , Neoplasias da Próstata/metabolismo , Transativadores/metabolismo , Proteínas de Transporte/genética , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Metilação de DNA , Epigenômica , Humanos , Técnicas In Vitro , Masculino , Neoplasias da Próstata/genética , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Transativadores/genética , Regulador Transcricional ERG
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...